
Biogeography of boreal passerine range dynamics in western North America: past, present, and future
Author(s) -
Stralberg Diana,
Matsuoka Steven M.,
Handel Colleen M.,
Schmiegelow Fiona K. A.,
Hamann Andreas,
Bayne Erin M.
Publication year - 2017
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/ecog.02393
Subject(s) - boreal , taiga , passerine , ecology , range (aeronautics) , habitat , biogeography , climate change , geography , biological dispersal , ecological niche , physical geography , biology , population , materials science , composite material , demography , sociology
Many of the Neotropical migrant bird species that breed throughout the Canadian boreal region are not found in the Alaskan boreal region, separated by the northwestern cordilleran mountains, despite the presence of climatically suitable habitat. We asked whether biological or climatic factors constrain certain species from crossing this geographic barrier. Analyzing a comprehensive dataset for 80 boreal passerine species, we used phylogenetic logistic regression to evaluate the relative importance of physical, migratory and competition metrics versus current and paleoclimatic suitability factors. Controlling for current climatic suitability within boreal Alaska, we found that species with the greatest climatic suitability across the northwestern cordillera, presently and also during the mid‐Holocene period, were most likely to be regular breeders in the Alaskan boreal region. Migratory strategy also played a role, but could not be disentangled from its strong phylogenetic basis. Our analysis suggests that the perceived barrier of the northwestern cordillera may be easily weakened as climate change improves conditions there for many forest species. The weakening of this barrier may lead to relatively rapid range expansions and the reshuffling of species communities. Species’ realized distributional shifts will be a function of the interplay between a changing climate and static topographic features.