Open Access
Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the east Asian continental islands
Author(s) -
Kubota Yasuhiro,
Shiono Takayuki,
Kusumoto Buntarou
Publication year - 2015
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/ecog.00981
Subject(s) - species richness , endemism , ecology , geography , vascular plant , quaternary , habitat , climate change , geology , biology , paleontology
We investigated the roles of climate, geography, and geology in plant diversity and endemicity on the east Asian continental islands, by testing predictions from contrasting hypotheses considering current climate, habitat stability, and isolation as major drivers of plant richness and endemicity. We created a fine‐resolution map of vascular plant richness (5614 species) with 10 × 10 km grid cells. Using this large dataset and regression models, we explored correlations between species richness/number of endemics and temperature, precipitation, Quaternary temperature/precipitation changes, Quaternary alluvial development and volcanic disturbances (presence of alluvial plains and of pyroclastic flows), distance from the continent, and elevation. We applied these analyses to the vascular plant assemblage as a whole and separately to trees, herbs, and ferns. Temperature and precipitation were associated with the richness of vascular plants overall and of their endemics. Quaternary temperature change was negatively associated with the richness of vascular plants overall and of their endemics. The presence of pyroclastic flows and of lowland alluvial plains was negatively associated with those. Distance from the continent and elevation were positively associated with endemic species richness, especially those of trees and herbs. While current climate was an important predictor of species richness (especially of ferns), geographical isolation and habitat stability were the main predictors of the endemic species richness of trees and herbs. The relative importance of current climate and historical factors may be related to the dispersal ability of functional groups. Our results illustrate that the diverse geographical conditions reflecting the characteristics of the island led to the various historical effects on biodiversity patterns. The highly endemic flora on the east Asian islands resulted from species accumulation and in situ diversification, suggesting that the climate and historical hypotheses are not mutually exclusive, but can be reconciled as the interplay between recent ecological and evolutionary processes.