z-logo
Premium
Interplay of adenosine monophosphate‐activated protein kinase/sirtuin‐1 activation and sodium influx inhibition mediates the renal benefits of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes: A novel conceptual framework
Author(s) -
Packer Milton
Publication year - 2020
Publication title -
diabetes, obesity and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.445
H-Index - 128
eISSN - 1463-1326
pISSN - 1462-8902
DOI - 10.1111/dom.13961
Subject(s) - tubuloglomerular feedback , ampk , renal glucose reabsorption , renal sodium reabsorption , chemistry , endocrinology , glomerular hyperfiltration , medicine , glucose transporter , amp activated protein kinase , kidney , adenosine , protein kinase a , pharmacology , diabetes mellitus , reabsorption , biochemistry , type 2 diabetes , diabetic nephropathy , kinase , insulin
Long‐term treatment with sodium‐glucose co‐transporter‐2 (SGLT2) inhibitors slows the deterioration of renal function in patients with diabetes. This benefit cannot be ascribed to an action on blood glucose, ketone utilization, uric acid or systolic blood pressure. SGLT2 inhibitors produce a striking amelioration of glomerular hyperfiltration. Although initially ascribed to an action of these drugs to inhibit proximal tubular glucose reabsorption, SGLT2 inhibitors exert renoprotective effects, even in patients with meaningfully impaired levels of glomerular function that are sufficient to abolish their glycosuric actions. Instead, the reduction in intraglomerular pressures may be related to an action of SGLT2 inhibitors to interfere with the activity of sodium‐hydrogen exchanger isoform 3, thereby inhibiting proximal tubular sodium reabsorption and promoting tubuloglomerular feedback. Yet, experimentally, such an effect may not be sufficient to prevent renal injury. It is therefore noteworthy that the diabetic kidney exhibits an important defect in adenosine monophosphate‐activated protein kinase (AMPK) and sirtuin‐1 (SIRT1) signalling, which may contribute to the development of nephropathy. These transcription factors exert direct effects to mute oxidative stress and inflammation, and they also stimulate autophagy, a lysosomally mediated degradative pathway that maintains cellular homeostasis in the kidney. SGLT2 inhibitors induce both AMPK and SIRT1, and they have been shown to stimulate autophagy, thereby ameliorating cellular stress and glomerular and tubular injury. Enhanced AMPK/SIRT1 signalling may also contribute to the action of SGLT2 inhibitors to interfere with sodium transport mechanisms. The dual effects of SGLT2 inhibitors on AMPK/SIRT1 activation and renal tubular sodium transport may explain the protective effects of these drugs on the kidney in type 2 diabetes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here