Premium
Regulation of cardiomyocyte proliferation during development and regeneration
Author(s) -
Takeuchi Takashi
Publication year - 2014
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/dgd.12134
Subject(s) - regeneration (biology) , zebrafish , microbiology and biotechnology , heart development , biology , morphogenesis , cell growth , mammalian heart , homeostasis , cell cycle , embryogenesis , cell , embryonic stem cell , embryo , genetics , gene
The regulation of cardiomyocyte proliferation is important for heart development and regeneration. The proliferation patterns of cardiomyocytes are closely related to heart morphogenesis, size, and functions. The proliferation levels are high during early embryogenesis; however, mammalian cardiomyocytes exit the cell cycle irreversibly soon after birth. The cell cycle exit inhibits cardiac regeneration in mammals. On the other hand, cardiomyocytes of adult zebrafish and probably newts can proliferate after cardiac injury, and the hearts can be regenerated. Therefore, the ability to reproliferate determines regenerative ability. As in other cells, the relationship between proliferation and differentiation is very interesting, and is closely related to cardiac development, regeneration and homeostasis. In this review, these topics are discussed.