Premium
Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos
Author(s) -
Takase Yuta,
Tadokoro Ryosuke,
Takahashi Yoshiko
Publication year - 2013
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/dgd.12106
Subject(s) - embryo , quail , fluorescence microscope , biology , fluorescein isothiocyanate , green fluorescent protein , fluorescence , stain , fluorescein , microbiology and biotechnology , anatomy , staining , biochemistry , genetics , physics , quantum mechanics , endocrinology , gene
To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo‐wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein ( GFP ) and red fluorescent protein ( RFP ) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink‐infused embryos were further subjected to histological sections, and double stained with antibodies including QH ‐1 (quail), α smooth muscle actin (α SMA ), and PECAM ‐1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter‐labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate ( FITC )‐lectin and Rhodamine‐dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink‐infused embryos visualized fine vascular structures of both embryo proper and extra‐embryonic plexus in a Z‐stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals.