Premium
Relation of sputum neutrophilia to the development of chronic lung allograft dysfunction after lung transplantation
Author(s) -
Sikkeland Liv Ingunn Bjoner,
Durheim Michael Thomas,
Riste Tonje Bøyum,
Kongerud Johny,
Alexis Neil E.,
Holm Are Martin
Publication year - 2021
Publication title -
clinical transplantation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 76
eISSN - 1399-0012
pISSN - 0902-0063
DOI - 10.1111/ctr.14188
Subject(s) - medicine , sputum , lung transplantation , bronchoalveolar lavage , neutrophilia , lung , transplantation , cystic fibrosis , immunology , gastroenterology , pathology , tuberculosis
Chronic lung allograft dysfunction (CLAD) is a serious complication after lung transplantation (LuTx) and is associated with elevated proportions of neutrophils in bronchoalveolar lavage (BAL). Induced sputum is a less‐invasive sampling method than BAL and assesses markers of inflammation on the surfaces of large central airways. We wanted to examine whether % neutrophil levels in induced sputum were elevated prior to CLAD diagnosis among LuTx recipients, and whether sputum markers of inflammation can be used as a tool for predicting the development of CLAD. Induced sputum samples were collected at 1, 3, 6, 12, and 24 months post‐LuTx in 36 patients with a history of COPD or pulmonary fibrosis, and of these, 16 developed CLAD either during or after the sputum surveillance period. At 2 years, median (IQR) % neutrophils in induced sputum were significantly higher among patients with CLAD compared with those without CLAD [73 (52‐80) % vs 59 (41‐76) %, p = .01]. Interestingly, we found a significant increase in the rate of change in % neutrophils beginning at 90 days preceding the diagnosis of CLAD. This suggests using sputum neutrophil percentage as a surveillance modality for monitoring lung allograft function after LuTx.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom