z-logo
open-access-imgOpen Access
Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice
Author(s) -
Li Xiaoyu,
Wang Xue,
Zhang Chunmei,
Wang Jinsong,
Wang Songlin,
Hu Lei
Publication year - 2022
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.13191
Subject(s) - glycolysis , mitochondrial biogenesis , oxidative phosphorylation , mitochondrion , microbiology and biotechnology , biology , mesenchymal stem cell , nad+ kinase , stem cell , senescence , biochemistry , chemistry , metabolism , enzyme
Objectives Evidences have suggested that the metabolic function is the key regulator to the fate of MSCs, but its function in senescence of MSC and the underlying mechanism is unclear. Therefore, the purpose of this study was to investigate the metabolic activity of MSCs and its possible mechanism during aging. Materials and Methods We used the Seahorse XF24 Analyzer to understand OCR and ECAR in BMSCs and used RT‐PCR to analyze the gene expression of mitochondrial biogenesis and key enzymes in glycolysis. We analyzed BMSC mitochondrial activity by MitoTracker Deep Red and JC‐1 staining, and detected NAD+/NADH ratio and ATP levels in BMSCs. Microarray and proteomic analyses were performed to detect differentially expressed genes and proteins in BMSCs. The impact of aging on BMSCs through mitochondrial electron transport chain (ETC) was evaluated by Rotenone and Coenzyme Q10. Results Our results demonstrated that the oxidative phosphorylation and glycolytic activity of BMSCs in aged mice were significantly decreased when compared with young mice. BMSCs in aged mice had lower mitochondrial membrane potential, NAD+/NADH ratio, and ATP production than young mice. FABP4 may play a key role in BMSC senescence caused by fatty acid metabolism disorders. Conclusions Taken together, our results indicated the dysfunction of the metabolic activity of BMSCs in aged mice, which would play the important role in the impaired biological properties. Therefore, the regulation of metabolic activity may be a potential therapeutic target for enhancing the regenerative functions of BMSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here