z-logo
open-access-imgOpen Access
Alkbh1‐mediated DNA N6‐methyladenine modification regulates bone marrow mesenchymal stem cell fate during skeletal aging
Author(s) -
Cai GuangPing,
Liu YaLin,
Luo LiPing,
Xiao Ye,
Jiang TieJian,
Yuan Jian,
Wang Min
Publication year - 2022
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.13178
Subject(s) - mesenchymal stem cell , bone marrow , adipogenesis , microbiology and biotechnology , osteoblast , chemistry , osteonectin , biology , cancer research , immunology , osteocalcin , alkaline phosphatase , in vitro , biochemistry , enzyme
Objectives DNA N6‐methyladenine (N6‐mA) demethylase Alkbh1 participates in regulating osteogenic differentiation of mesenchymal stem cell (MSCs) and vascular calcification. However, the role of Alkbh1 in bone metabolism remains unclear. Materials and Methods Bone marrow mesenchymal stem cells (BMSCs)‐specific Alkbh1 knockout mice were used to investigate the role of Alkbh1 in bone metabolism. Western blot, qRT‐PCR, and immunofluorescent staining were used to evaluate the expression of Alkbh1 or optineurin (optn). Micro‐CT, histomorphometric analysis, and calcein double‐labeling assay were used to evaluate bone phenotypes. Cell staining and qRT‐PCR were used to evaluate the osteogenic or adipogenic differentiation of BMSCs. Dot blotting was used to detect the level of N6‐mA in genomic DNA. Chromatin immunoprecipitation (Chip) assays were used to identify critical targets of Alkbh1. Alkbh1 adeno‐associated virus was used to overexpress Alkbh1 in aged mice. Results Alkbh1 expression in BMSCs declined during aging. Knockout of Alkbh1 promoted adipogenic differentiation of BMSCs while inhibited osteogenic differentiation. BMSC‐specific Alkbh1 knockout mice exhibited reduced bone mass and increased marrow adiposity. Mechanistically, we identified optn as the downstream target through which Alkbh1‐mediated DNA m6A modification regulated BMSCs fate. Overexpression of Alkbh1 attenuated bone loss and marrow fat accumulation in aged mice. Conclusions Our findings demonstrated that Alkbh1 regulated BMSCs fate and bone‐fat balance during skeletal aging and provided a potential target for the treatment of osteoporosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here