z-logo
open-access-imgOpen Access
Glycomics reveal that ST6GAL1‐mediated sialylation regulates uterine lumen closure during implantation
Author(s) -
Han Kun,
Wang Feiyu,
Yue Yulu,
Tan Xihong,
Tian Miao,
Miao Yiliang,
Zhao Shuhong,
Dong Weijie,
Yu Mei
Publication year - 2022
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.13169
Subject(s) - endometrium , uterus , biology , lumen (anatomy) , epithelium , immunohistochemistry , microbiology and biotechnology , endocrinology , immunology , genetics
Objectives Implantation failure is a major cause of prenatal mortality. The uterine lumen closure contributes to embryo adhesion to the uterus, but its underlying mechanisms are largely unknown. Our previous study has reported that endometrial fold extension can lead to uterine lumen closure in pigs. The objective of this study was to reveal molecular mechanisms of the uterine lumen closure by characterizing the molecular basis of the endometrial fold extension during implantation in pigs. Materials and methods Uterine and endometrium tissues during implantation were collected in pigs. MALDI‐TOF MS was used to characterize the N‐glycomic profiles. Histochemistry, siRNA transfection, Western blotting, lectin immumoprecipitation, mass spectrometry and assays of wounding healing and cell aggregation were performed to investigate the molecular basis. Results We observed that uterine luminal epithelium (LE) migrated collectively during endometrial fold extension. For the first time, we identified a large number of N‐glycan compositions from endometrium during implantation using MALDI‐TOF MS. Notably, the α2,6‐linked sialic acid and ST6GAL1 were highly expressed in uterine LE when the endometrial folds extended greatly. Subsequently, the role of ST6GAL1‐mediated 2,6‐sialylation in collective epithelial migration was demonstrated. Finally, we found that ST6GAL1‐mediated α2,6‐sialylation of E‐cadherin may participate in collective migration of uterine LE. Conclusions The study reveals a mechanism of uterine lumen closure by identifying that ST6GAL1‐mediated α2,6‐sialylation of cell adhesion molecules contributes to endometrial fold extension through regulating collective migration of uterine LE.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here