z-logo
open-access-imgOpen Access
Osteoblasts impair cholesterol synthesis in chondrocytes via Notch1 signalling
Author(s) -
Yang Yueyi,
Zhang Demao,
Guo Daimo,
Li Jiachi,
Xu Siqun,
Wei Jieya,
Xie Jing,
Zhou Xuedong
Publication year - 2021
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.13156
Subject(s) - osteoblast , microbiology and biotechnology , chemistry , western blot , chondrocyte , cartilage , runx2 , cholesterol , biology , biochemistry , anatomy , gene , in vitro
Objectives Previous reports have proposed the importance of signalling and material exchange between cartilage and subchondral bone. However, the specific experimental evidence is still insufficient to support the effect of this interdependent relationship on mutual cell behaviours. In this study, we aimed to investigate cellular lipid metabolism in chondrocytes induced by osteoblasts. Methods Osteoblast‐induced chondrocytes were established in a Transwell chamber. A cholesterol detection kit was used to detect cholesterol contents. RNA sequencing and qPCR were performed to assess changes in mRNA expression. Western blot analysis was performed to detect protein expression. Immunofluorescence staining was conducted to show the cellular distribution of proteins. Results Cholesterol levels were significantly decreased in chondrocytes induced by osteoblasts. Osteoblasts reduced cholesterol synthesis in chondrocytes by reducing the expression of a series of synthetases, including Fdft1, Sqle, Lss, Cyp51, Msmo1, Nsdhl, Sc5d, Dhcr24 and Dhcr7. This modulatory process involves Notch1 signalling. The expression of ncstn and hey1, an activator and a specific downstream target of Notch signalling, respectively, were decreased in chondrocytes induced by osteoblasts. Conclusions For the first time, we elucidated that communication with osteoblasts reduces cholesterol synthesis in chondrocytes through Notch1 signalling. This result may provide a better understanding of the effect of subchondral bone signalling on chondrocytes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here