z-logo
open-access-imgOpen Access
Interleukin‐4‐loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF‐β1/Smad pathway for repair of bone defect
Author(s) -
Zhang Jiankang,
Shi Haitao,
Zhang Nian,
Hu Liru,
Jing Wei,
Pan Jian
Publication year - 2020
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.12907
Subject(s) - smad , mesenchymal stem cell , microbiology and biotechnology , macrophage polarization , bone healing , chemistry , m2 macrophage , in vivo , regeneration (biology) , macrophage , transforming growth factor , biomedical engineering , materials science , in vitro , biology , anatomy , medicine , biochemistry
Objective Tissue engineering is a promising strategy for repair of large bone defect. However, the immune system reactions to biological scaffold are increasingly being recognized as a crucial factor influencing regeneration efficacy. In this study, a bone‐bioactive hydrogel bead loaded with interleukin‐4 (IL‐4) was used to regulate macrophages polarization and accelerate bone regeneration. Methods IL‐4‐loaded calcium‐enriched gellan gum (Ca‐GG + IL‐4) hydrogel beads were synthesised. And the effect on cell behaviour was detected. Furthermore, the effect of the Ca‐GG + IL‐4 hydrogel bead on macrophage polarization and the effect of macrophage polarization on bone mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation were evaluated in vitro and in vivo. Results BMSCs were able to survive in the hydrogel regardless of whether IL‐4 was incorporated. Immunofluorescence staining and qPCR results revealed that Ca‐GG + IL‐4 hydrogel bead could promote M2 macrophage polarization and increase transforming growth factor (TGF)‐β1 expression level, which activates the TGF‐β1/Smad signalling pathway in BMSCs and promotes osteogenic differentiation. Moreover, immunohistochemical analysis demonstrated Ca‐GG + IL‐4 hydrogel bead could promote M2 macrophage polarization and reduce cell apoptosis in vivo. In addition, micro‐CT and immunohistochemical analysis at 12 weeks post‐surgery showed that Ca‐GG + IL‐4 hydrogel bead could achieve superior bone defect repair efficacy in vivo. Conclusions The Ca‐GG + IL‐4 hydrogel bead effectively promoted bone defect regeneration via regulating macrophage polarization, reducing cell apoptosis and promoting BMSCs osteogenesis through TGF‐β1/Smad pathway. Therefore, it is a promising strategy for repair of bone defect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here