z-logo
open-access-imgOpen Access
Autophagy changes in lung tissues of mice at 30 days after carbon black‐metal ion co‐exposure
Author(s) -
He Wei,
Peng Hongzhen,
Ma Jifei,
Wang Qisheng,
Li Aiguo,
Zhang Jichao,
Kong Huating,
Li Qingnuan,
Sun Yanhong,
Zhu Ying
Publication year - 2020
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.12813
Subject(s) - autophagy , toxicity , lung , saline , chemistry , pulmonary toxicity , biodistribution , pharmacology , medicine , in vitro , biochemistry , apoptosis
Abstract Objectives Accumulating studies have investigated the PM2.5‐induced pulmonary toxicity, while gaps still remain in understanding its toxic mechanism. Due to its high specific surface area and adsorption capacity similar to nanoparticles, PM2.5 acts as a significant carrier of metals in air and then leads to altered toxic effects. In this study, we aimed to use CBs and Ni as model materials to investigate the autophagy changes and pulmonary toxic effects at 30 days following intratracheal instillation of CBs‐Ni mixture. Materials and methods Groups of mice were instilled with 100 µL normal saline (NS), 20 µg CBs, and 4 µg Ni or CBs‐Ni mixture, respectively. At 7 and 30 days post‐instillation, all the mice were weighed and then sacrificed. The evaluation system was composed of the following: (a) autophagy and lysosomal function assessment, (b) trace element biodistribution observation in lungs, (c) pulmonary lavage biomedical analysis, (d) lung histopathological evaluation, (e) coefficient analysis of major organs and (f) CBs‐Ni interaction and cell proliferation assessment. Results We found that after CBs‐Ni co‐exposure, no obvious autophagy and lysosomal dysfunction or pulmonary toxicity was detected, along with complete clearance of Ni from lung tissues as well as recovery of biochemical indexes to normal range. Conclusions We conclude that the damaged autophagy and lysosomal function, as well as physiological function, was repaired at 30 days after exposure of CBs‐Ni. Our findings provide a new idea for scientific assessment of the impact of fine particles on environment and human health, and useful information for the comprehensive treatment of air pollution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here