z-logo
open-access-imgOpen Access
CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β‐catenin and promoting the Wnt signalling
Author(s) -
Zhu Bin,
Xue Feng,
Li Guangyi,
Zhang Changqing
Publication year - 2020
Publication title -
cell proliferation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.647
H-Index - 74
eISSN - 1365-2184
pISSN - 0960-7722
DOI - 10.1111/cpr.12709
Subject(s) - wnt signaling pathway , downregulation and upregulation , microbiology and biotechnology , chemistry , catenin , runx2 , in vitro , ubiquitin , stem cell , bone marrow , cellular differentiation , bone marrow stem cell , immunoprecipitation , signal transduction , biology , osteoblast , immunology , biochemistry , gene
Abstract Objectives The osteogenesis differentiation of human bone marrow stem cells (BMSCs) is essential for bone formation and bone homeostasis. In this study, we aim to elucidate novel molecular targets for bone metabolism diseases. Materials and methods The dataset GSE80614 which includes mRNA expression profile during BMSCs osteogenic differentiation was obtained from the GEO database ( https://www.ncbi.nlm.nih.gov/geo/ ). The osteogenic differentiation of BMSCs was measured by ALP staining, AR staining and expression of osteogenic markers in vitro. For in vivo assay, we seeded BMSCs onto beta‐tricalcium phosphate (β‐TCP) and transplanted them into muscle pockets of nude mice. Luciferase assay, co‐immunoprecipitation assay and in vitro ubiquitination assay were carried out to investigate the molecular mechanism. Results We found that α‐B‐crystallin (CRYAB) expression was elevated during the process of BMSCs osteogenic differentiation. Further studies showed that upregulation of CRYAB significantly enhanced the osteogenic differentiation, while downregulation of CRYAB suppressed it. CRYAB regulated BMSCs osteogenic differentiation mainly through the canonical Wnt/β‐catenin signalling. In addition, we found that CRYAB could physically interact with β‐catenin and protect it from ubiquitination and degradation, which stabilized β‐catenin and promoted the Wnt signalling. Conclusions The present study provides evidences that CRYAB is an important regulator of BMSCs osteogenic differentiation by protecting β‐catenin from ubiquitination and degradation and promoting the Wnt signalling. It may serve as a potential therapeutic target for diseases related to bone metabolism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom