Premium
A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detection
Author(s) -
Mohammadzadeh Hekmat,
Gharehchopogh Farhad Soleimanian
Publication year - 2021
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12397
Subject(s) - feature selection , algorithm , computer science , population , artificial intelligence , convergence (economics) , machine learning , selection (genetic algorithm) , optimization algorithm , mathematics , mathematical optimization , demography , sociology , economics , economic growth
Feature selection (FS) in data mining is one of the most challenging and most important activities in pattern recognition. In this article, a new hybrid model of whale optimization algorithm (WOA) and flower pollination algorithm (FPA) is presented for the problem of FS based on the concept of opposition‐based learning (OBL) which name is HWOAFPA. The procedure is that the WOA is run first and at the same time during the run, the WOA population is changed by the OBL. And, to increase the accuracy and speed of convergence, it is used as the initial population of FPA. To evaluate the performance of the proposed method, experiments were carried out in two steps. The experiments were performed on 10 datasets from the UCI data repository and Email spam detection datasets. The results obtained from the first step showed that the proposed method was more successful in terms of the average size of selection and classification accuracy than other basic metaheuristic algorithms. In addition, the results from the second step showed that the proposed method which was a run on the Email spam dataset performed much more accurately than other similar algorithms in terms of accuracy of Email spam detection.