Premium
An evolutionary‐based approach for dealing with numerical and categorical attributes in ILP
Author(s) -
MuñozTexzocotetla Orlando,
MacKinneyRomero René
Publication year - 2019
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12215
Subject(s) - categorical variable , inductive logic programming , discretization , artificial intelligence , set (abstract data type) , aleph , computer science , evolutionary algorithm , mathematics , theoretical computer science , machine learning , programming language , mathematical analysis , physics , particle physics
Inductive logic programming (ILP) induces concepts from a set of positive examples, a set of negative examples, and background knowledge. ILP has been applied on tasks such as natural language processing, finite element mesh design, network mining, robotics, and drug discovery. These data sets usually contain numerical and multivalued categorical attributes; however, only a few relational learning systems are capable of handling them in an efficient way. In this paper, we present an evolutionary approach, called Grouping and Discretization for Enriching the Background Knowledge (GDEBaK), to deal with numerical and multivalued categorical attributes in ILP. This method uses evolutionary operators to create and test numerical splits and subsets of categorical values in accordance with a fitness function. The best subintervals and subsets are added to the background knowledge before constructing candidate hypotheses. We implemented GDEBaK embedded in Aleph and compared it to lazy discretization in Aleph and discretization in Top‐down Induction of Logical Decision Trees (TILDE) systems. The results obtained showed that our method improves accuracy and reduces the number of rules in most cases. Finally, we discuss these results and possible lines for future work.