z-logo
Premium
Fabric defect detection based on saliency histogram features
Author(s) -
Li Min,
Wan Shaohua,
Deng Zhongmin,
Wang Yajun
Publication year - 2019
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12206
Subject(s) - histogram , artificial intelligence , computer science , pattern recognition (psychology) , histogram of oriented gradients , support vector machine , classifier (uml) , feature extraction , feature selection , computer vision , image (mathematics)
In order to increase the automatic quality control level in the textile industry, depending on the big data collected by the Internet of things of the textile factories, this paper proposes a novel visual saliency–based defect detection algorithm, which has the capability of automatically detecting defect in both nonpatterned and patterned fabrics. The algorithm employs the histogram features extracted from the saliency maps to detect the fabric defects. The algorithm involves three main steps: (1) saliency map generation to highlight the defective regions and suppress the defect‐free regions, (2) saliency histogram features extraction and selection to obtain the feature vectors that can effectively discriminate between the defective and defect‐free fabric images, and (3) fabric defect detection using a two‐class support vector machine classifier that has been trained using sets of feature vectors extracted from defective and defect‐free fabric samples. Experimental results show that our method yields accurate detections, outperforming other state‐of‐the‐art algorithms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here