z-logo
Premium
A general model for fuzzy decision tree and fuzzy random forest
Author(s) -
Zheng Hui,
He Jing,
Zhang Yanchun,
Huang Guangyan,
Zhang Zhenjiang,
Liu Qing
Publication year - 2019
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12195
Subject(s) - data mining , membership function , defuzzification , fuzzy logic , computer science , fuzzy classification , decision tree , fuzzy number , artificial intelligence , fuzzy set operations , machine learning , neuro fuzzy , type 2 fuzzy sets and systems , fuzzy set , mathematics , fuzzy control system
The problem of risk classification and prediction, an essential research direction, aiming to identify and predict risks for various applications, has been researched in this paper. To identify and predict risks, numerous researchers build models on discovering hidden information of a label (positive credit or negative credit). Fuzzy logic is robust in dealing with ambiguous data and, thus, benefits the problem of classification and prediction. However, the way to apply fuzzy logic optimally depends on the characteristics of the data and the objectives, and it is extraordinarily tricky to find such a way. This paper, therefore, proposes a general membership function model for fuzzy sets (GMFMFS) in the fuzzy decision tree and extend it to the fuzzy random forest method. The proposed methods can be applied to identify and predict the credit risks with almost optimal fuzzy sets. In addition, we analyze the feasibility of our GMFMFS and prove our GMFMFS‐based linear membership function can be extended to a nonlinear membership function without a significant increase in computing complex. Our GMFMFS‐based fuzzy decision tree is tested with a real dataset of US credit, Susy dataset of UCI, and synthetic datasets of big data. The results of experiments further demonstrate the effectiveness and potential of our GMFMFS‐based fuzzy decision tree with linear membership function and nonlinear membership function.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here