Premium
Detection and classification of sleep apnea using genetic algorithms and SVM‐based classification of thoracic respiratory effort and oximetric signal features
Author(s) -
Abedi Zahra,
Naghavi Nadia,
Rezaeitalab Fariborz
Publication year - 2017
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12138
Subject(s) - polysomnography , sleep apnea , support vector machine , obstructive sleep apnea , medicine , apnea , algorithm , sleep (system call) , computer science , pattern recognition (psychology) , artificial intelligence , anesthesia , operating system
Sleep apnea is a relatively prevalent breathing disorder characterized by temporary interruptions in airflow during sleep. There are 2 major types of sleep apnea. Obstructive sleep apnea occurs when air cannot flow through the upper airway despite efforts to breathe. Central sleep apnea occurs when the brain fails to signal to the muscles to maintain breathing. The standard diagnostic test is polysomnography, which is expensive and time consuming. The aim of this study was to design an automatic diagnostic and classifying algorithm for sleep apneas employing thoracic respiratory effort and oximetric signals. This algorithm was trained and tested applying a database of 54 subjects who had undergone polysomnography. A feature extraction stage was conducted to compute features. An optimal genetic algorithm was applied to select optimal features of these 2 kinds of signals. The classification technique was based on the support vector machine classifier to classify the selected features in 3 classes as healthy, obstructive, and central sleep apnea events. The results show that our automated classification algorithm can diagnose sleep apnea and its types with an average accuracy level of 90.2% (87.5‐95.8) in the test set and 90.9% in the validation set with high acceptable accuracy.