Premium
Learning Hierarchical Task Models from Input Traces
Author(s) -
Hogg Chad,
MuñozAvila Héctor,
Kuter Ugur
Publication year - 2016
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12044
Subject(s) - task (project management) , computer science , set (abstract data type) , artificial intelligence , planner , convergence (economics) , domain (mathematical analysis) , reduction (mathematics) , machine learning , mathematics , mathematical analysis , geometry , management , economics , programming language , economic growth
We describe HTN‐MAKER , an algorithm for learning hierarchical planning knowledge in the form of task‐reduction methods for hierarchical task networks (HTNs). HTN‐MAKER takes as input a set of planning states from a classical planning domain and plans that are applicable to those states, as well as a set of semantically annotated tasks to be accomplished. The algorithm analyzes this semantic information to determine which portion of the input plans accomplishes a particular task and constructs task‐reduction methods based on those analyses. We present theoretical results showing that HTN‐MAKER is sound and complete. Our experiments in five well‐known planning domains confirm the theoretical results and demonstrate convergence toward a set of HTN methods that can be used to solve any problem expressible as a classical planning problem in that domain, relative to a set of goal types for which tasks have been defined. In three of the five domains, HTN planning with the learned methods scales much better than a modern classical planner.