z-logo
Premium
A Hybrid Color Quantization Algorithm Incorporating a Human Visual Perception Model
Author(s) -
Schaefer Gerald,
Nolle Lars
Publication year - 2015
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/coin.12043
Subject(s) - color quantization , artificial intelligence , quantization (signal processing) , image quality , color image , computer vision , color histogram , mathematics , computer science , image processing , human visual system model , pattern recognition (psychology) , algorithm , image (mathematics)
Color quantization is a common image processing technique where full color images are to be displayed using a limited palette of colors. The choice of a good palette is crucial as it directly determines the quality of the resulting image. Standard quantization approaches aim to minimize the mean squared error (MSE) between the original and the quantized image, which does not correspond well to how humans perceive the image differences. In this article, we introduce a color quantization algorithm that hybridizes an optimization scheme based with an image quality metric that mimics the human visual system. Rather than minimizing the MSE, its objective is to maximize the image fidelity as evaluated by S‐CIELAB, an image quality metric that has been shown to work well for various image processing tasks. In particular, we employ a variant of simulated annealing with the objective function describing the S‐CIELAB image quality of the quantized image compared with its original. Experimental results based on a set of standard images demonstrate the superiority of our approach in terms of achieved image quality.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here