Premium
Using historical spy satellite photographs and recent remote sensing data to identify high‐conservation‐value forests
Author(s) -
Munteanu Catalina,
Senf Cornelius,
Nita Mihai D.,
Sabatini Francesco Maria,
Oeser Julian,
Seidl Rupert,
Kuemmerle Tobias
Publication year - 2022
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1111/cobi.13820
Subject(s) - geography , biodiversity , environmental resource management , provisioning , ecosystem services , forestry , cartography , ecosystem , ecology , environmental science , computer science , biology , telecommunications
High‐conservation‐value forests (HCVFs) are critically important for biodiversity and ecosystem service provisioning, but they face many threats. Where systematic HCVF inventories are missing, such as in parts of Eastern Europe, these forests remain largely unacknowledged and therefore often unprotected. We devised a novel, transferable approach for detecting HCVFs based on integrating historical spy satellite images, contemporary remote sensing data (Landsat), and information on current potential anthropogenic pressures (e.g., road infrastructure, population density, demand for fire wood, terrain). We applied the method to the Romanian Carpathians, for which we mapped forest continuity (1955–2019), canopy structural complexity, and anthropogenic pressures. We identified 738,000 ha of HCVF. More than half of this area was identified as susceptible to current anthropogenic pressures and lacked formal protection. By providing a framework for broad‐scale HCVF monitoring, our approach facilitates integration of HCVF into forest conservation and management. This is urgently needed to achieve the goals of the European Union's Biodiversity Strategy to maintain valuable forest ecosystems.