Premium
Effects of landscape transformation on bird colonization and extinction patterns in a large‐scale, long‐term natural experiment
Author(s) -
Mortelliti Alessio,
Lindenmayer David B.
Publication year - 2015
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1111/cobi.12523
Subject(s) - woodland , eucalyptus , habitat , geography , colonization , ecology , biodiversity , local extinction , agroforestry , population , extinction (optical mineralogy) , occupancy , forestry , environmental science , biology , biological dispersal , paleontology , sociology , demography
Conversion of agricultural land to forest plantations is a major driver of global change. Studies on the impact of forest plantations on biodiversity in plantations and in the surrounding native vegetation have been inconclusive. Consequently, it is not known how to best manage the extensive areas of the planet currently covered by plantations. We used a novel, long‐term (16 years) and large‐scale (30,000 ha) landscape transformation natural experiment (the Nanangroe experiment, Australia) to test the effects of land conversion on population dynamics of 64 bird species associated with woodland and forest. A unique aspect of our study is that we focused on the effects of plantations on birds in habitat patches within plantations. Our study design included 56 treatment sites (Eucalyptus patches where the surrounding matrix was converted from grazed land to pine plantations), 55 control sites (Eucalyptus patches surrounded by grazed land), and 20 matrix sites (sites within the pine plantations and grazed land). Bird populations were studied through point counts, and colonization and extinction patterns were inferred through multiple season occupancy models. Large‐scale pine plantation establishment affected the colonization or extinction patterns of 89% of studied species and thus led to a comprehensive turnover in bird communities inhabiting Eucalyptus patches embedded within the maturing plantations. Smaller bodied species appeared to respond positively to plantations (i.e., colonization increased and extirpation of these species decreased in patches surrounded by plantations) because they were able to use the newly created surrounding matrix. We found that the effects of forest plantations affected the majority of the bird community, and we believe these effects could lead to the artificial selection of one group of species at the expense of another.