Premium
Connectivity of wood thrush breeding, wintering, and migration sites based on range‐wide tracking
Author(s) -
Stanley Calandra Q.,
McKin Emily A.,
Fraser Kevin C.,
Macpherson Maggie P.,
Casbourn Garth,
Friesen Lyle,
Marra Peter P.,
Studds Colin,
Ryder T. Brandt,
Diggs Nora E.,
Stutchbury Bridget J. M.
Publication year - 2015
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1111/cobi.12352
Subject(s) - songbird , geography , range (aeronautics) , habitat , population , ecology , bird migration , deforestation (computer science) , biology , materials science , demography , sociology , computer science , composite material , programming language
Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light‐level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species‐level migratory connectivity networks for this declining songbird by combining our tracking results with range‐wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one‐third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88–93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole. Conectividad de Sitios de Reproducción, Invierno y Migración del Zorzal con Base en Rastreo de Cobertura Amplia