z-logo
open-access-imgOpen Access
Erythropoietin promotes the differentiation of fetal neural stem cells into glial cells via the erythropoietin receptor‐β common receptor/Syne‐1/ H3K9me3 pathway
Author(s) -
Yang ZhenHong,
Zhang SiJia,
Zhao HaiPing,
Li FangFang,
Tao Zhen,
Luo YuMin,
Wang RongLiang
Publication year - 2022
Publication title -
cns neuroscience and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 69
eISSN - 1755-5949
pISSN - 1755-5930
DOI - 10.1111/cns.13876
Subject(s) - erythropoietin receptor , neural stem cell , erythropoietin , neurogenesis , microbiology and biotechnology , viability assay , flow cytometry , chemistry , biology , astrocyte , cellular differentiation , receptor , stem cell , signal transduction , cell , endocrinology , biochemistry , central nervous system , gene
Aims To investigate the effect of erythropoietin (EPO) on the differentiation of neural stem cells (NSCs)/neural progenitors (NPs) in the treatment of hypoxic–ischemic injury and its potential mechanisms. Methods Fetal NSCs/NPs were treated with EPO after oxygen and glucose deprivation/reoxygenation (OGD/R). Cell viability, proliferation, and differentiation of NSCs/NPs were detected by CellTiter‐Glo, Edu assay, flow cytometry, and quantitative real‐time PCR (qPCR). Immunofluorescence staining, co‐immunoprecipitation (Co‐IP), and western blotting were used to test the existence of EPO receptor/β common receptor (EPOR/βCR) heterodimer on NSCs/NPs and the possible pathway. Results EPO treatment at different time points increased cell viability without affecting proliferation. EPO treatment immediately after OGD/R promoted oligodendrocyte and astrocyte differentiation, while decreasing neuronal differentiation of NSCs/NPs. EPOR/βCR heterodimer existed on the cell surface of the fetal cortical NSCs/NPs, EPO treatment significantly increased the mRNA expression of βCR and elevated the correlation between EPOR and βCR levels. In addition, mass spectrometry analysis identified Syne‐1 as a downstream signaling molecule of the EPOR/βCR heterodimer. Immunofluorescence staining and western blotting indicated that the βCR/Syne‐1/H3K9me3 pathway was possibly involved in the differentiation of fetal neural stem cells into the glial cell effect of EPO. Conclusion EPO treatment immediately after OGD/R could not facilitate fetal NSCs/NPs neurogenesis but promoted the formation of the EPOR/βCR heterodimer on fetal NSCs/NPs, which mediates its function in glial differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here