z-logo
open-access-imgOpen Access
Activation of the glucocorticoid receptor rapidly triggers calcium‐dependent serotonin release in vitro
Author(s) -
Paul Nicolas,
Raymond Justine,
Lumbreras Sara,
Bartsch Dusan,
Weber Tillmann,
Lau Thorsten
Publication year - 2021
Publication title -
cns neuroscience and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 69
eISSN - 1755-5949
pISSN - 1755-5930
DOI - 10.1111/cns.13634
Subject(s) - glucocorticoid receptor , chemistry , medicine , endocrinology , calcium , agonist , pharmacology , receptor , glucocorticoid , biology , biochemistry
Aims Glucocorticoids rapidly provoke serotonin (5‐HT) release in vivo. We aimed to investigate molecular mechanisms of glucocorticoid receptor (GR)‐triggered 5‐HT release. Methods Employing 1C11 cells to model 5‐HT neurotransmission, immunofluorescence and Pearson's Correlation Coefficient were used to analyze colocalization of GR, 5‐HT, vesicle membrane protein synaptotagmin 1 and vesicle dye FM4‐64FX. FFN511 and FM4‐64FX dyes as well as calcium imaging were used to visualize vesicular 5‐HT release upon application of GR agonist dexamethasone, GR antagonist mifepristone and voltage‐gated calcium channel (VGCC) inhibitors. Results GR, 5‐HT, synaptotagmin 1 and FM4‐64FX showed overlapping staining patterns, with Pearson's Correlation Coefficient indicating colocalization. Similarly to potassium chloride, dexamethasone caused a release of FFN511 and uptake of FM4‐64FX, indicating vesicular 5‐HT release. Mifepristone, calcium depletion and inhibition of L‐type VGCC significantly diminished dexamethasone‐induced vesicular 5‐HT release. Conclusions In close proximity to 5‐HT releasing sites, activated GR rapidly triggers L‐type VGCC‐dependent vesicular 5‐HT release. These findings provide a better understanding of the interrelationship between glucocorticoids and 5‐HT release.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here