z-logo
open-access-imgOpen Access
Macrolide derivatives reduce proinflammatory macrophage activation and macrophage‐mediated neurotoxicity
Author(s) -
Zhang Bei,
Kopper Timothy J.,
Liu Xiaodong,
Cui Zheng,
Van Lanen Steven G.,
Gensel John C.
Publication year - 2019
Publication title -
cns neuroscience and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 69
eISSN - 1755-5949
pISSN - 1755-5930
DOI - 10.1111/cns.13092
Subject(s) - neurotoxicity , neuroprotection , proinflammatory cytokine , macrophage , cytokine , azithromycin , pharmacology , in vitro , macrophage polarization , medicine , inflammation , chemistry , immunology , antibiotics , toxicity , biochemistry
Summary Introduction Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. Aims To improve the efficacy and reduce antibiotic resistance risk of AZM‐based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow‐derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF‐gamma) with and without derivative costimulation. Pro‐ and anti‐inflammatory cytokine production, IL‐12 and IL‐10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. Results Azithromycin and some derivatives increased IL‐10 and reduced IL‐12 production of M1 macrophages. IL‐10/IL‐12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. Conclusions Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL‐10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here