z-logo
open-access-imgOpen Access
Critical determinants of human neutrophil peptide 1 for enhancing host epithelial adhesion of Shigella flexneri
Author(s) -
Liao Chongbing,
Fang Kun,
Xiao Jiu,
Zhang Wei,
Zhang Bing,
Yuan Weirong,
Lu Wuyuan,
Xu Dan
Publication year - 2019
Publication title -
cellular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.542
H-Index - 138
eISSN - 1462-5822
pISSN - 1462-5814
DOI - 10.1111/cmi.13069
Subject(s) - shigella , shigella flexneri , biology , innate immune system , microbiology and biotechnology , secretion , pathogen , bacteria , immune system , escherichia coli , immunology , biochemistry , gene , genetics , salmonella
Abstract Human neutrophil peptides (HNPs), also known as human myeloid α‐defensins degranulated by infiltrating neutrophils at bacterial infection loci, exhibit broad antomicrobial activities against bacteria, fungi, and viruses. We have made a surprising recent finding that Shigella , a highly contagious, yet poorly adhesive enteric pathogen, exploits human α‐defensins including HNP1 to enhance its adhesion to and invasion of host epithelial cells. However, the critical molecular determinants responsible for HNP1‐enhanced Shigella adhesion and invasion have yet to be investigated. Using cultured epithelial cells and polarised Caco2 cells as an in vitro infection model, we demonstrated that HNP1 promoted Shigella infection in a structure‐ and sequence‐dependent manner, with two bulky hydrophobic residues, Trp26 and Phe28 important for HNP1 self‐assembly, being most critical. The functional importance of hydrophobicity for HNP1‐enhanced Shigella infection was further verified by substitutions for Trp26 of a series of unnatural amino acids with straight aliphatic side chains of different lengths. Dissection of the Shigella infection process revealed that bacteria—rather than host cells—bound HNP1 contributed most to the enhancement. Further, mutagenesis analysis of bacterial surface components, while precluding the involvement of lipopolysaccharides (LPS) in the interaction with HNP1, identified outer membrane proteins and the Type 3 secretion apparatus as putative binding targets of HNP1 involved in enhanced Shigella adhesion and invasion. Our findings provide molecular and mechanistic insights into the mode of action of HNP1 in promoting Shigella infection, thus showcasing another example of how innate immune factors may serve as a double‐edged sword in health and disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here