Premium
Human fascia lata in rat calvarial bone defects
Author(s) -
Amer Mariano,
Rodriguez Pablo,
Renou Sandra
Publication year - 2018
Publication title -
clinical oral implants research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.407
H-Index - 161
eISSN - 1600-0501
pISSN - 0905-7161
DOI - 10.1111/clr.100_13358
Subject(s) - medicine , fascia lata , h&e stain , masson's trichrome stain , trichrome , anatomy , fibrous joint , dentistry , surgery , staining , pathology
Tooth loss leads to a decrease in alveolar bone volume, and consequently to the need for guided bone regeneration (GBR) techniques to restore bone anatomy, and the adequate choice of therapy. Fascia lata membrane (FLM) has been used in surgical procedures in neurology, orthopedics, otorhinolaryngology, cardiology, vascular surgery, gynecology, and dentistry for guided tissue regeneration. The aim of the present preliminary study was to evaluate bone tissue response in rat calvarial bone defects covered with human fascia lata membrane (FLM). Eight Wistar rats, 230g body weight, were subjected to bone surgery to create a 5x5mm long/ 1mm deep calvarial bone defect on either side of the median suture, using a piezoelectric scalpel and irrigation. The animals were treated according to the following protocol: Group I (GI): placement of a single layer of FLM (Biotar, Rosario, Prov. de Santa Fe, Argentina) to cover the defects; Group II (GII): double layer of FLM to cover the defects; Group III: no membrane; Group IV: control. All the animals were euthanized 60 days post-surgery; the heads were resected, radiographed, decalcified, and processed for embedding in paraffin and Hematoxylin-Eosin and Masson's trichrome staining. All bone defects covered with a single or double layer of FLM showed adequate osteogenesis, and none exhibited an inflammatory response. Groups III and IV Control showed scant osteogenesis and no alterations in soft tissues. The results obtained with this experimental model show biocompatibility of FML with the surrounding tissues at the studied time points. No alterations were observed in osteocytic lacunae or osteocytes in the bone after osteotomy using a piezoelectric scalpel. Further studies need to be conducted to assess bone tissue response to FLM in combination with bone substitutes.