Premium
A Data‐Driven Approach to Functional Map Construction and Bases Pursuit
Author(s) -
Azencot Omri,
Lai Rongjie
Publication year - 2021
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.14360
Subject(s) - computer science , scalar (mathematics) , laplace operator , algorithm , basis function , polygon mesh , mathematics , linear map , mathematical optimization , mathematical analysis , computer graphics (images) , geometry , pure mathematics
Abstract We propose a method to simultaneously compute scalar basis functions with an associated functional map for a given pair of triangle meshes. Unlike previous techniques that put emphasis on smoothness with respect to the Laplace–Beltrami operator and thus favor low‐frequency eigenfunctions, we aim for a basis that allows for better feature matching. This change of perspective introduces many degrees of freedom into the problem allowing to better exploit non‐smooth descriptors. To effectively search in this high‐dimensional space of solutions, we incorporate into our minimization state‐of‐the‐art regularizers. We solve the resulting highly non‐linear and non‐convex problem using an iterative scheme via the Alternating Direction Method of Multipliers. At each step, our optimization involves simple to solve linear or Sylvester‐type equations. In practice, our method performs well in terms of convergence, and we additionally show that it is similar to a provably convergent problem. We show the advantages of our approach by extensively testing it on multiple datasets in a few applications including shape matching, consistent quadrangulation and scalar function transfer.