z-logo
Premium
Seamless Mipmap Filtering for Dual Paraboloid Maps
Author(s) -
Wang Zhenni,
Yui Ho Tze,
Leung Chi Sing,
Wong Eric. W. M.
Publication year - 2019
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13850
Subject(s) - paraboloid , rendering (computer graphics) , computer science , algorithm , computer vision , mathematics , geometry , surface (topology)
Dual paraboloid mapping is an approach for environment mapping. Its major advantage is its fast map generation speed. For graphics applications, when filtering is needed, the filtering tool would naturally be mipmapping. However, directly applying mipmapping to dual paraboloid mapping would give us three problems. They are the discontinuity across the dual paraboloid map boundary, the non‐uniform sampling problem and the depth testing issue. We propose three approaches to solve these problems. Our approaches are based on some closed form equations derived via theoretical analysis. Using these equations, we modify the coordinates involved during the rendering process. In other words, these problems are handled just by using dual paraboloid maps and mipmaps differently, instead of fundamentally altering their data structures. Consequently, we are fixing the problems without damaging the map generation speed advantage. Applying all three approaches, we improve the rendering quality of dual paraboloid map mipmaps to a level equivalent to that of cubemap mipmaps, while preserving its fast map generation speed advantage. This gives dual paraboloid map mipmaps the potential to be a better choice than cubemap mipmaps for the devices with less computational power. The effectiveness and the efficiency of the proposed approaches are demonstrated using a glossy reflection application and an omnidirectional soft shadow generation application.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here