z-logo
Premium
Parallel Globally Consistent Normal Orientation of Raw Unorganized Point Clouds
Author(s) -
Jakob J.,
Buchenau C.,
Guthe M.
Publication year - 2019
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13797
Subject(s) - point cloud , computer science , polygon mesh , graph , vertex (graph theory) , computation , orientation (vector space) , theoretical computer science , algorithm , artificial intelligence , computer graphics (images) , mathematics , geometry
A mandatory component for many point set algorithms is the availability of consistently oriented vertex‐normals (e.g. for surface reconstruction, feature detection, visualization). Previous orientation methods on meshes or raw point clouds do not consider a global context, are often based on unrealistic assumptions, or have extremely long computation times, making them unusable on real‐world data. We present a novel massively parallelized method to compute globally consistent oriented point normals for raw and unsorted point clouds. Built on the idea of graph‐based energy optimization, we create a complete kNN‐graph over the entire point cloud. A new weighted similarity criterion encodes the graph‐energy. To orient normals in a globally consistent way we perform a highly parallel greedy edge collapse, which merges similar parts of the graph and orients them consistently. We compare our method to current state‐of‐the‐art approaches and achieve speedups of up to two orders of magnitude. The achieved quality of normal orientation is on par or better than existing solutions, especially for real‐world noisy 3D scanned data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here