z-logo
Premium
Quantifying the Error of Light Transport Algorithms
Author(s) -
Celarek A.,
Jakob W.,
Wimmer M.,
Lehtinen J.
Publication year - 2019
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13775
Subject(s) - rendering (computer graphics) , outlier , computer science , algorithm , pixel , mean squared error , standard deviation , offset (computer science) , variance (accounting) , artificial intelligence , statistics , mathematics , accounting , business , programming language
This paper proposes a new methodology for measuring the error of unbiased physically based rendering algorithms. The current state of the art includes mean squared error (MSE) based metrics and visual comparisons of equal‐time renderings of competing algorithms. Neither is satisfying as MSE does not describe behavior and can exhibit significant variance, and visual comparisons are inherently subjective. Our contribution is two‐fold: First, we propose to compute many short renderings instead of a single long run and use the short renderings to estimate MSE expectation and variance as well as per‐pixel standard deviation. An algorithm that achieves good results in most runs, but with occasional outliers is essentially unreliable, which we wish to quantify numerically. We use per‐pixel standard deviation to identify problematic lighting effects of rendering algorithms. The second contribution is the error spectrum ensemble (ESE), a tool for measuring the distribution of error over frequencies. The ESE serves two purposes: It reveals correlation between pixels and can be used to detect outliers, which offset the amount of error substantially.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here