z-logo
Premium
Topic Tomographies (TopTom): a visual approach to distill information from media streams
Author(s) -
Gobbo B.,
Balsamo D.,
Mauri M.,
Bajardi P.,
Panisson A.,
Ciuccarelli P.
Publication year - 2019
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13714
Subject(s) - computer science , pipeline (software) , dimension (graph theory) , interface (matter) , visualization , identification (biology) , information retrieval , data stream mining , data mining , human–computer interaction , botany , mathematics , bubble , maximum bubble pressure method , parallel computing , biology , pure mathematics , programming language
In this paper we present Top Tom, a digital platform whose goal is to provide analytical and visual solutions for the exploration of a dynamic corpus of user‐generated messages and media articles, with the aim of i) distilling the information from thousands of documents in a low‐dimensional space of explainable topics, ii) cluster them in a hierarchical fashion while allowing to drill down to details and stories as constituents of the topics, iii) spotting trends and anomalies. Top Tom implements a batch processing pipeline able to run both in near‐real time with time stamped data from streaming sources and on historical data with a temporal dimension in a cold start mode. The resulting output unfolds along three main axes: time, volume and semantic similarity (i.e. topic hierarchical aggregation). To allow the browsing of data in a multiscale fashion and the identification of anomalous behaviors, three visual metaphors were adopted from biological and medical fields to design visualizations, i.e. the flowing of particles in a coherent stream, tomographic cross sectioning and contrast‐like analysis of biological tissues. The platform interface is composed by three main visualizations with coherent and smooth navigation interactions: calendar view, flow view, and temporal cut view. The integration of these three visual models with the multiscale analytic pipeline proposes a novel system for the identification and exploration of topics from unstructured texts. We evaluated the system using a collection of documents about the emerging opioid epidemics in the United States.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom