Premium
Hinted Star Coordinates for Mixed Data
Author(s) -
Matute J.,
Linsen L.
Publication year - 2020
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13666
Subject(s) - categorical variable , computer science , star (game theory) , projection (relational algebra) , data mining , set (abstract data type) , measure (data warehouse) , data set , dimensionality reduction , algorithm , artificial intelligence , mathematics , machine learning , mathematical analysis , programming language
Mixed data sets containing numerical and categorical attributes are nowadays ubiquitous. Converting them to one attribute type may lead to a loss of information. We present an approach for handling numerical and categorical attributes in a holistic view. For data sets with many attributes, dimensionality reduction (DR) methods can help to generate visual representations involving all attributes. While automatic DR for mixed data sets is possible using weighted combinations, the impact of each attribute on the resulting projection is difficult to measure. Interactive support allows the user to understand the impact of data dimensions in the formation of patterns. Star Coordinates is a well‐known interactive linear DR technique for multi‐dimensional numerical data sets. We propose to extend Star Coordinates and its initial configuration schemes to mixed data sets. In conjunction with analysing numerical attributes, our extension allows for exploring the impact of categorical dimensions and individual categories on the structure of the entire data set. The main challenge when interacting with Star Coordinates is typically to find a good configuration of the attribute axes. We propose a guided mixed data analysis based on maximizing projection quality measures by the use of recommended transformations, named hints, in order to find a proper configuration of the attribute axes.