Premium
Acquisition and Validation of Spectral Ground Truth Data for Predictive Rendering of Rough Surfaces
Author(s) -
Clausen O.,
Marroquim R.,
Fuhrmann A.
Publication year - 2018
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13470
Subject(s) - rendering (computer graphics) , ground truth , computer science , rgb color model , computer vision , artificial intelligence , isotropy , computer graphics (images) , optics , physics
Physically based rendering uses principles of physics to model the interaction of light with matter. Even though it is possible to achieve photorealistic renderings, it often fails to be predictive. There are two major issues: first, there is no analytic material model that considers all appearance critical characteristics; second, light is in many cases described by only 3 RGB‐samples. This leads to the problem that there are different models for different material types and that wavelength dependent phenomena are only approximated. In order to be able to analyze the influence of both problems on the appearance of real world materials, an accurate comparison between rendering and reality is necessary. Therefore, in this work, we acquired a set of precisely and spectrally resolved ground truth data. It consists of the precise description of a new developed reference scene including isotropic BRDFs of 24 color patches, as well as the reference measurements of all patches under 13 different angles inside the reference scene. Our reference data covers rough materials with many different spectral distributions and various illumination situations, from direct light to indirect light dominated situations.