z-logo
Premium
A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data
Author(s) -
Kaiser Adrien,
Ybanez Zepeda Jose Alonso,
Boubekeur Tamy
Publication year - 2019
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13451
Subject(s) - computer science , geometric primitive , artificial intelligence , computer graphics , representation (politics) , computer vision , segmentation , abstraction , volume (thermodynamics) , simple (philosophy) , set (abstract data type) , process (computing) , data acquisition , geometric modeling , raw data , noise (video) , data set , geometric data analysis , graphics , computer graphics (images) , image (mathematics) , mechanical engineering , philosophy , physics , epistemology , quantum mechanics , politics , political science , programming language , engineering , operating system , law
The amount of captured 3D data is continuously increasing, with the democratization of consumer depth cameras, the development of modern multi‐view stereo capture setups and the rise of single‐view 3D capture based on machine learning. The analysis and representation of this ever growing volume of 3D data, often corrupted with acquisition noise and reconstruction artefacts, is a serious challenge at the frontier between computer graphics and computer vision. To that end, segmentation and optimization are crucial analysis components of the shape abstraction process, which can themselves be greatly simplified when performed on lightened geometric formats. In this survey, we review the algorithms which extract simple geometric primitives from raw dense 3D data. After giving an introduction to these techniques, from the acquisition modality to the underlying theoretical concepts, we propose an application‐oriented characterization, designed to help select an appropriate method based on one's application needs and compare recent approaches. We conclude by giving hints for how to evaluate these methods and a set of research challenges to be explored.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom