z-logo
Premium
Generating Tile Maps
Author(s) -
McNeill Graham,
Hale Scott A.
Publication year - 2017
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.13200
Subject(s) - tile , computer science , grid , thematic map , computer graphics (images) , range (aeronautics) , symbol (formal) , process (computing) , square (algebra) , data mining , cartography , geography , mathematics , geometry , archaeology , programming language , operating system , materials science , composite material
Abstract Tile maps are an important tool in thematic cartography with distinct qualities (and limitations) that distinguish them from better‐known techniques such as choropleths, cartograms and symbol maps. Specifically, tile maps display geographic regions as a grid of identical tiles so large regions do not dominate the viewer's attention and small regions are easily seen. Furthermore, complex data such as time series can be shown on each tile in a consistent format, and the grid layout facilitates comparisons across tiles. Whilst a small number of handcrafted tile maps have become popular, the time‐consuming process of creating new tile maps limits their wider use. To address this issue, we present an algorithm that generates a tile map of the specified type (e.g. square, hexagon, triangle) from raw shape data. Since the ‘best’ tile map depends on the specific geography visualized and the task to be performed, the algorithm generates and ranks multiple tile maps and allows the user to choose the most appropriate. The approach is demonstrated on a range of examples using a prototype browser‐based application.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here