z-logo
Premium
TimeArcs: Visualizing Fluctuations in Dynamic Networks
Author(s) -
Dang T. N.,
Pendar N.,
Forbes A. G.
Publication year - 2016
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12882
Subject(s) - computer science , visualization , cluster (spacecraft) , range (aeronautics) , graph drawing , data mining , theoretical computer science , computer network , materials science , composite material
In this paper we introduce TimeArcs, a novel visualization technique for representing dynamic relationships between entities in a network. Force‐directed layouts provide a way to highlight related entities by positioning them near to each other Entities are brought closer to each other (forming clusters) by forces applied on nodes and connections between nodes. In many application domains, relationships between entities are not temporally stable, which means that cluster structures and cluster memberships also may vary across time. Our approach merges multiple force‐directed layouts at different time points into a single comprehensive visualization that provides a big picture overview of the most significant clusters within a user‐defined period of time. TimeArcs also supports a range of interactive features, such as allowing users to drill‐down in order to see details about a particular cluster. To highlight the benefits of this technique, we demonstrate its application to various datasets, including the IMDB co‐star network, a dataset showing conflicting evidences within biomedical literature of protein interactions, and collocated popular phrases obtained from political blogs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here