z-logo
Premium
Multisampling Compressive Video Spectroscopy
Author(s) -
Jeon Daniel S.,
Choi Inchang,
Kim Min H.
Publication year - 2016
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12847
Subject(s) - coded aperture , hyperspectral imaging , digital micromirror device , computer science , artificial intelligence , image resolution , spectral imaging , computer vision , compressed sensing , snapshot (computer storage) , optics , physics , detector , telecommunications , operating system
The coded aperture snapshot spectral imaging (CASSI) architecture has been employed widely for capturing hyperspectral video. Despite allowing concurrent capture of hyperspectral video, spatial modulation in CASSI sacrifices image resolution significantly while reconstructing spectral projection via sparse sampling. Several multiview alternatives have been proposed to handle this low spatial resolution problem and improve measurement accuracy, for instance, by adding a translation stage for the coded aperture or changing the static coded aperture with a digital micromirror device for dynamic modulation. State‐of‐the‐art solutions enhance spatial resolution significantly but are incapable of capturing video using CASSI. In this paper, we present a novel compressive coded aperture imaging design that increases spatial resolution while capturing 4D hyperspectral video of dynamic scenes. We revise the traditional CASSI design to allow for multiple sampling of the randomness of spatial modulation in a single frame. We demonstrate that our compressive video spectroscopy approach yields enhanced spatial resolution and consistent measurements, compared with the traditional CASSI design.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here