Premium
Data‐driven Handwriting Synthesis in a Conjoined Manner
Author(s) -
Chen HsinI,
Lin TseJu,
Jian XiaoFeng,
Shen IChao,
Chen BingYu
Publication year - 2015
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12762
Subject(s) - handwriting , cursive , computer science , paragraph , style (visual arts) , speech recognition , artificial intelligence , range (aeronautics) , natural language processing , set (abstract data type) , art , programming language , materials science , literature , world wide web , composite material
A person's handwriting appears differently within a typical range of variations, and the shapes of handwriting characters also show complex interaction with their nearby neighbors. This makes automatic synthesis of handwriting characters and paragraphs very challenging. In this paper, we propose a method for synthesizing handwriting texts according to a writer's handwriting style. The synthesis algorithm is composed by two phases. First, we create the multidimensional morphable models for different characters based on one writer's data. Then, we compute the cursive probability to decide whether each pair of neighboring characters are conjoined together or not. By jointly modeling the handwriting style and conjoined property through a novel trajectory optimization, final handwriting words can be synthesized from a set of collected samples. Furthermore, the paragraphs’ layouts are also automatically generated and adjusted according to the writer's style obtained from the same dataset. We demonstrate that our method can successfully synthesize an entire paragraph that mimic a writer's handwriting using his/her collected handwriting samples.