Premium
AppFusion: Interactive Appearance Acquisition Using a Kinect Sensor
Author(s) -
Wu Hongzhi,
Zhou Kun
Publication year - 2015
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12600
Subject(s) - computer science , computer vision , artificial intelligence , rendering (computer graphics) , specular reflection , rgb color model , computer graphics (images) , high dynamic range , computation , exploit , visualization , dynamic range , optics , physics , computer security , algorithm
We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously. Next, the diffuse albedo and specular intensity of the spatially varying materials are rapidly computed in an inverse rendering framework, using data from the Kinect RGB camera. We demonstrate captured results of a range of materials, and physically validate our system.