Premium
CHC+RT: Coherent Hierarchical Culling for Ray Tracing
Author(s) -
Mattausch O.,
Bittner J.,
Jaspe A.,
Gobbetti E.,
Wimmer M.,
Pajarola R.
Publication year - 2015
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12582
Subject(s) - computer science , ray tracing (physics) , shader , computer graphics (images) , global illumination , distributed ray tracing , tracing , graphics pipeline , rendering (computer graphics) , computer vision , artificial intelligence , graphics , optics , physics , 3d computer graphics , operating system
We propose a new technique for in‐core and out‐of‐core GPU ray tracing using a generalization of hierarchical occlusion culling in the style of the CHC++ method. Our method exploits the rasterization pipeline and hardware occlusion queries in order to create coherent batches of work for localized shader‐based ray tracing kernels. By combining hierarchies in both ray space and object space, the method is able to share intermediate traversal results among multiple rays. We exploit temporal coherence among similar ray sets between frames and also within the given frame. A suitable management of the current visibility state makes it possible to benefit from occlusion culling for less coherent ray types like diffuse reflections. Since large scenes are still a challenge for modern GPU ray tracers, our method is most useful for scenes with medium to high complexity, especially since our method inherently supports ray tracing highly complex scenes that do not fit in GPU memory. For in‐core scenes our method is comparable to CUDA ray tracing and performs up to 5.94 × better than pure shader‐based ray tracing.