z-logo
Premium
T‐SAH: Animation Optimized Bounding Volume Hierarchies
Author(s) -
Bittner J.,
Meister D.
Publication year - 2015
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12581
Subject(s) - computer science , bounding overwatch , bounding volume , computer graphics (images) , animation , volume (thermodynamics) , frame rate , heuristics , computer vision , artificial intelligence , collision detection , physics , computer security , quantum mechanics , collision , operating system
We propose a method for creating a bounding volume hierarchy (BVH) that is optimized for all frames of a given animated scene. The method is based on a novel extension of surface area heuristic to temporal domain (T‐SAH). We perform iterative BVH optimization using T‐SAH and create a single BVH accounting for scene geometry distribution at different frames of the animation. Having a single optimized BVH for the whole animation makes our method extremely easy to integrate to any application using BVHs, limiting the per‐frame overhead only to refitting the bounding volumes. We evaluated the T‐SAH optimized BVHs in the scope of real‐time GPU ray tracing. We demonstrate, that our method can handle even highly complex inputs with large deformations and significant topology changes. The results show, that in a vast majority of tested scenes our method provides significantly better run‐time performance than traditional SAH and also better performance than GPU based per‐frame BVH rebuild.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here