z-logo
Premium
CorrelatedMultiples: Spatially Coherent Small Multiples With Constrained Multi‐Dimensional Scaling
Author(s) -
Liu Xiaotong,
Hu Yifan,
North Stephen,
Shen HanWei
Publication year - 2018
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12526
Subject(s) - multiple , computer science , scaling , visualization , set (abstract data type) , multidimensional scaling , solver , data set , algorithm , forcing (mathematics) , artificial intelligence , mathematics , machine learning , geometry , arithmetic , programming language , mathematical analysis
Displaying small multiples is a popular method for visually summarizing and comparing multiple facets of a complex data set. If the correlations between the data are not considered when displaying the multiples, searching and comparing specific items become more difficult since a sequential scan of the display is often required. To address this issue, we introduce CorrelatedMultiples, a spatially coherent visualization based on small multiples, where the items are placed so that the distances reflect their dissimilarities. We propose a constrained multi‐dimensional scaling (CMDS) solver that preserves spatial proximity while forcing the items to remain within a fixed region. We evaluate the effectiveness of our approach by comparing CMDS with other competing methods through a controlled user study and a quantitative study, and demonstrate the usefulness of CorrelatedMultiples for visual search and comparison in three real‐world case studies .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom