z-logo
Premium
Discrete 2‐Tensor Fields on Triangulations
Author(s) -
de Goes Fernando,
Liu Beibei,
Budninskiy Max,
Tong Yiying,
Desbrun Mathieu
Publication year - 2014
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12427
Subject(s) - tensor field , mathematics , geodesic , tensor contraction , symmetric tensor , covariant derivative , cartesian tensor , tangent vector , vector field , tensor product , pure mathematics , algebra over a field , tensor density , mathematical analysis , geometry , tangent , exact solutions in general relativity
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here