z-logo
Premium
Visualizing Validation of Protein Surface Classifiers
Author(s) -
Sarikaya A.,
Albers D.,
Mitchell J.,
Gleicher M.
Publication year - 2014
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12373
Subject(s) - computer science , classifier (uml) , visualization , artificial intelligence , ground truth , grid , construct (python library) , pattern recognition (psychology) , data mining , machine learning , programming language , geometry , mathematics
Abstract Many bioinformatics applications construct classifiers that are validated in experiments that compare their results to known ground truth over a corpus. In this paper, we introduce an approach for exploring the results of such classifier validation experiments, focusing on classifiers for regions of molecular surfaces. We provide a tool that allows for examining classification performance patterns over a test corpus. The approach combines a summary view that provides information about an entire corpus of molecules with a detail view that visualizes classifier results directly on protein surfaces. Rather than displaying miniature 3D views of each molecule, the summary provides 2D glyphs of each protein surface arranged in a reorderable, small‐multiples grid. Each summary is specifically designed to support visual aggregation to allow the viewer to both get a sense of aggregate properties as well as the details that form them. The detail view provides a 3D visualization of each protein surface coupled with interaction techniques designed to support key tasks, including spatial aggregation and automated camera touring. A prototype implementation of our approach is demonstrated on protein surface classifier experiments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here