z-logo
Premium
A Survey on Position‐Based Simulation Methods in Computer Graphics
Author(s) -
Bender Jan,
Müller Matthias,
Otaduy Miguel A.,
Teschner Matthias,
Macklin Miles
Publication year - 2014
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12346
Subject(s) - computer science , computer graphics , position (finance) , rendering (computer graphics) , computer graphics (images) , variety (cybernetics) , graphics , scientific visualization , virtual reality , artificial intelligence , finance , economics
The dynamic simulation of mechanical effects has a long history in computer graphics. The classical methods in this field discretize Newton's second law in a variety of Lagrangian or Eulerian ways, and formulate forces appropriate for each mechanical effect: joints for rigid bodies; stretching, shearing or bending for deformable bodies and pressure, or viscosity for fluids, to mention just a few. In the last years, the class of position‐based methods has become popular in the graphics community. These kinds of methods are fast, stable and controllable which make them well‐suited for use in interactive environments. Position‐based methods are not as accurate as force‐based methods in general but they provide visual plausibility. Therefore, the main application areas of these approaches are virtual reality, computer games and special effects in movies. This state‐of‐the‐art report covers the large variety of position‐based methods that were developed in the field of physically based simulation. We will introduce the concept of position‐based dynamics, present dynamic simulation based on shape matching and discuss data‐driven upsampling approaches. Furthermore, we will present several applications for these methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here