Premium
IISPH‐FLIP for incompressible fluids
Author(s) -
Cornelis Jens,
Ihmsen Markus,
Peer Andreas,
Teschner Matthias
Publication year - 2014
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12324
Subject(s) - compressibility , smoothed particle hydrodynamics , solver , computer science , component (thermodynamics) , projection (relational algebra) , mechanics , computational science , physics , algorithm , thermodynamics , programming language
Abstract We propose to use Implicit Incompressible Smoothed Particle Hydrodynamics (IISPH) for pressure projection and boundary handling in Fluid‐Implicit‐Particle (FLIP) solvers for the simulation of incompressible fluids. This novel combination addresses two issues of existing SPH and FLIP solvers, namely mass preservation in FLIP and efficiency and memory consumption in SPH. First, the SPH component enables the simulation of incompressible fluids with perfect mass preservation. Second, the FLIP component efficiently enriches the SPH component with detail that is comparable to a standard SPH simulation with the same number of particles, while improving the performance by a factor of 7 and significantly reducing the memory consumption. We demonstrate that the proposed IISPH‐FLIP solver can simulate incompressible fluids with a quantifiable, imperceptible density deviation below 0.1%. We show large‐scale scenarios with up to 160 million particles that have been processed on a single desktop PC using only 15GB of memory. One‐ and two‐way coupled solids are illustrated.