Premium
Visual Explanation of the Complexity in Julia Sets
Author(s) -
Schrijvers Okke,
van Wijk Jarke J.
Publication year - 2013
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12130
Subject(s) - julia set , computer science , animation , simple (philosophy) , quadratic equation , inverse , set (abstract data type) , process (computing) , algorithm , computer graphics (images) , mathematics , artificial intelligence , pure mathematics , geometry , programming language , philosophy , epistemology
Julia sets based on quadratic polynomials have a very simple definition, yet a highly intricate shape. Our contribution is to provide a visual explanation for this complexity. To this end we show the construction of Julia sets as a dynamic process, in contrast to showing just a static image of the set itself. Our method is based on the Inverse Iteration Method (IIM). We start with a disk, which is successively distorted. The crucial step is to show an animation of the effect of taking a root of a subset of the complex plane. We present four different approaches for this, using a Riemann surface, a corkscrew, a fan, and disks as metaphors. We packaged our results in an interactive tool with a simple interface, such that everybody can view and inspect these for different Julia sets. The results are useful for teaching complex analysis, promoting mathematics, entertainment, and, above all, as a visual explanation for the complexity of Julia sets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom