z-logo
Premium
Nonparametric Models for Uncertainty Visualization
Author(s) -
Pöthkow Kai,
Hege HansChristian
Publication year - 2013
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/cgf.12100
Subject(s) - nonparametric statistics , probability distribution , computer science , probabilistic logic , histogram , kernel density estimation , probability density function , marginal distribution , random field , mathematics , algorithm , random variable , artificial intelligence , statistics , estimator , image (mathematics)
Abstract An uncertain (scalar, vector, tensor) field is usually perceived as a discrete random field with a priori unknown probability distributions. To compute derived probabilities, e.g. for the occurrence of certain features, an appropriate probabilistic model has to be selected. The majority of previous approaches in uncertainty visualization were restricted to Gaussian fields. In this paper we extend these approaches to nonparametric models, which are much more flexible, as they can represent various types of distributions, including multimodal and skewed ones. We present three examples of nonparametric representations: (a) empirical distributions, (b) histograms and (c) kernel density estimates (KDE). While the first is a direct representation of the ensemble data, the latter two use reconstructed probability density functions of continuous random variables. For KDE we propose an approach to compute valid consistent marginal distributions and to efficiently capture correlations using a principal component transformation. Furthermore, we use automatic bandwidth selection, obtaining a model for probabilistic local feature extraction. The methods are demonstrated by computing probabilities of level crossings, critical points and vortex cores in simulated biofluid dynamics and climate data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here